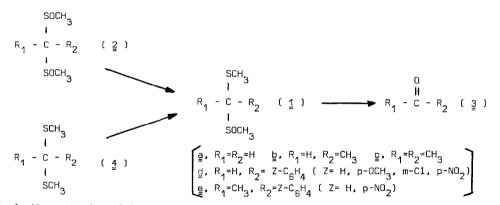
ALDEHYDES AND KETONES FROM MERCAPTALS VIA OXIDATION


H. Nieuwenhuyse and R. Louw

Gorlaeus Laboratoria, The University, P.O.B.75, Leiden, The Netherlands

(Received in UK 17 September 1971; accepted for publication 1 October 1971)

A recent report¹ on the preparation of aldehydes $\frac{3}{2}$ from mercaptal S-oxides $\frac{1}{2}$ --- via alkylation of the carbanion of $\frac{1}{2}\frac{a^2}{a^2}$ --- prompts us to communicate some pertinent data and views gained from our studies on disulfoxides and related compounds³.

We have observed that <u>disulfoxides 2</u> --- in CHCl₃ upon treatment with HCl gas at 0 - 20^oC --- are rapidly converted into their carbonyl analogues 3 plus CH_3SSCH_3 and $CH_3SO_2SCH_3$. As <u>chlorine</u> is formed as an intermediate, the first step --- involving oxidation of HCl --- is the conversion of 2 into 1^4 . In fact, runs involving some selected <u>mono</u>sulfoxides (1_{2} ; 1_{2} ; 1_{2} , 2_{-} P-NO₂) showed very rapid production of 3 and CH_3SSCH_3 in good yields. The latter findings are in perfect agreement with those of Ogura and Tsuchihashi¹. The successful alkylation of carbanions from mercaptal S-oxides (e.g., 1,3-dithiane-1-oxide⁵, 1_{2} ^{1,3b} and 1_{2} ^{3b}) indeed makes process $1 \rightarrow 3$ a versatile method for the synthesis of aldehydes and ketones, superior to the rather cumbersome "direct" conversion $4 \rightarrow 3^6$

Alternatively the carbanion of $\frac{4}{2}$ --- and its mono-alkyl or -aryl derivatives like $\frac{4}{2}$, $\frac{4}{2}$ --- may be alkylated first, followed by <u>oxidation</u> and decomposition $\frac{4}{2} \rightarrow \frac{1}{2} \rightarrow \frac{3}{2}^{7}$. Depending on R_1, R_2 and further conditions step $\frac{1}{2} \rightarrow \frac{3}{2}$ may or may not occur during reaction $\frac{4}{2} \rightarrow \frac{1}{2}$.

We have studied the oxidation of $\frac{4}{2}$ e with H_2O_2 in aqueous acetone or with NaIO_4 in water at room temperature. Whereas $\frac{4}{2}$, $\frac{4}{2}$ and $\frac{4}{2}$, Z=p-NO₂ led to isolable $\frac{1}{2}$ in 85 - 90 % yields, the other substrates "directly" produced $\frac{3}{2}$ (50 - 70 %). These facts are in accord with the mechanism outlined

by Kuhn et al⁹, involving (\underline{i}) which --- depending on its structure --- may or may not solvolyze via cation ($\underline{i}\underline{i}$) to give 3.

In our opinion the rapid acid-catalyzed conversion $1 \rightarrow 3$ also occurs in other cases. Thus, the

$$R_{1} \sim C - R_{2} \xrightarrow{(-CH_{3}SDH)} R_{1} - C - R_{2}$$

$$I \bigoplus_{\substack{\text{SOCH}_{3} \\ \text{H}}} (\underline{i}) \qquad (\underline{i})$$

$$R_{1} \sim C - R_{2} \xrightarrow{(-CH_{3}SDH)} R_{1} - C - R_{2} \xrightarrow{(\underline{i})} (\underline{i})$$

$$(\underline{i}) \qquad (\underline{i})$$

low yields in attempted oxidations of sugar mercaptals¹⁰ suggest that here too, conversions $4 \rightarrow 1$ are followed by $1 \rightarrow 3$ rather than by further oxidation $1 \rightarrow 2$.

Finally we believe that highly comparable mechanisms obtain in (some of) the direct conversions $4 \rightarrow 3$ documented earlier; e.g., reactions of type 4 compounds with N-Br-succinimide may also involve sulfonium derivatives capable of giving cations ($\underline{i}\underline{i}$).

NOTES AND REFERENCES.

- 1. K. Ogura and G. Tsuchihashi, Tetrahedron Letters, 3151 (1971)
- 2. $\frac{1}{2}$ most coveniently synthesized by oxidation of $\frac{4}{29}$ with H_2O_2 in 50 % acetone-water. Distillation yields 74 % $\frac{1}{2}$, b.p. 93-5° (1 mm), m.p. 4 - 6°, ngO = 1.5516; NMR (CDCl₃): δ 2.31 (s, 3H, SCH₃), δ 2.66 (s, 3H, S(O)CH₃), δ 3.87, δ 3.80, J_{AB}[≈] 13.8 Hz (2H, CH₂). 3.a.R. Louw and H. Nieuwenhuyse, Chemical Communications, 1561 (1968)

b.H. Nieuwenhuyse, thesis Leiden, 1971 (to be published)

4. From 2a we have indeed observed -intermediate- 1a through NMR spectroscopy

- 5. R.M. Carlson and P.M. Helquist, J. Org. Chem. 33, 2596 (1968)
- 6. D. Seebach, <u>Synthesis</u>, 19 (1969)
- The alkylation of the anion of 2a or 2b was found to be a sluggish reaction^{3b} (cf. also ref.8), making this a much less attractive route to 3.
- 8. J.S. Berry, U.S. Patent 3,124,618 (1964); Chem. Abstracts 60, 13143 (1964)
- 9. R. Kuhn, W. Baschang-Bister and W. Dafeldecker, <u>Annalen 641</u>, 160 (1961); R. Kuhn and F.A. Neugebauer, <u>Chem. Berichte</u> <u>94</u>, 2629 (1961)
- H. Zinner and K.-H. Falk, <u>Chem. Berichte 88</u>, 566 (1955);
 E.J. Bourne and R. Stephens, Ann. Rev. Biochem. <u>25</u>, 79 (1956)